首页> 外文OA文献 >An Approach To The Correlation Of Security Events Based On Machine Learning Techniques
【2h】

An Approach To The Correlation Of Security Events Based On Machine Learning Techniques

机译:基于机器学习技术的安全事件关联方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Organizations face the ever growing challenge of providing security within their IT infrastructures. Static approaches to security, such as perimetral defense, have proven less than effective - and, therefore, more vulnerable - in a new scenario characterized by increasingly complex systems and by the evolution and automation of cyber attacks. Moreover, dynamic detection of attacks through IDSs (Instrusion Detection Systems) presents too many false positives to be effective. This work presents an approach on how to collect and normalize, as well as how to fuse and classify, security alerts. This approach involves collecting alerts from different sources and normalizes them according to standardized structures - IDMEF (Intrusion Detection Message Exchange Format). The normalized alerts are grouped into meta-alerts (fusion, or clustering), which are later classified using machine learning techniques into attacks or false alarms. We validate and report an implementation of this approach against the DARPA Challenge and the Scan of the Month, using three different classifications - SVMs, Bayesian Networks and Decision Trees - having achieved high levels of attack detection with little false positives. Our results also indicate that our approach outperforms other works when it comes to detecting new kinds of attacks, making it more suitable to a world of evolving attacks. © 2013 Stroeh et al.
机译:组织面临着在其IT基础架构中提供安全性的日益增长的挑战。事实证明,在以系统日益复杂,网络攻击的发展和自动化为特征的新情况下,静态防御方法(例如外围防御)的有效性不足,因此更加脆弱。此外,通过IDS(入侵检测系统)对攻击的动态检测会带来太多误报,无法有效发挥作用。这项工作提出了一种有关如何收集和标准化安全警报以及如何对其进行融合和分类的方法。这种方法涉及从不同来源收集警报,并根据标准化结构IDMEF(入侵检测消息交换格式)对警报进行标准化。归一化的警报被分组为元警报(融合或群集),随后使用机器学习技术将其分类为攻击或错误警报。我们使用三种不同的分类-SVM,贝叶斯网络和决策树-验证并报告了针对DARPA挑战和本月扫描的这种方法的实施情况,这些分类实现了高水平的攻击检测且几乎没有误报。我们的结果还表明,在检测新型攻击方面,我们的方法优于其他方法,使其更适合不断发展的攻击。 ©2013 Stroeh等。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号